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Intro

What are the problems in the text2spargl task

Multilingual complexity (GPT translation)

Entity linking accuracy (Query rewriting and Spotlight)

Knowledge Graph ontology alignment ("Nearest neighbors" and RAG)
SPARQL query generation (Adaptive prompt )
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Baseline

e As asimple baseline we have used ChatGPT with few-shot examples

e The baseline execution match accuracy - 17%

e For evaluation of DBPedia we have used a subset from LcQuad2.0 and
QALD-10 (multilingual)

e Execution on DBPedia via API

e Execution on Corporate via OpenLink Virtuoso graph database



Multilinguality problem

e Problem - The model does not
understand entities well in other
languages.

=
e Solution - add English translation @_'
via GPT.

DBF

e Uplift - +7% execution match




Entity linking problem

DBPedia

e Solution - Query rewriting
(Washington vs Washington D.C.)

| Spotlight API |
GPT Fallback

e DBPedia Spotlight for Entity
Recognition and Entity Linking
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e Uplift - +6% execution match .
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LLM does not know the ontology of underlying graphs

e To generate a high-quality
LLM response, you need an
understanding of the
knowledge graph. Query

e To do this, we search for —
"nearest neighbors" in
DBpedia.

e Forthe corporate graph, we  __
create a RAG based on TTL
files.

e Uplift - +12% execution
e
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Adaptive prompt

Adaptive prompt was used to
improve generation.

For this, RAG was used on several
popular DBpedia and Wikidata
datasets (quald9b, lcquad, and
others).

Uplift - +6% execution match
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How do query generation

We augment the input to
ChatGPT with relevant
question-query pairs from RAG
Index consists from LCQuad
and QALD question-query pairs
With the relevant entities,
predicates, reasoning
few-shots and mined via RAG
exemplars along with the input
question we generate a query
We do execution guided
generation (5 tries) to generate
an executable SPARQL
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Links

Github




